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Optical carrier wave shocking: Detection and dispersion
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Carrier wave shocking is studied using the pseudospectral spatial-domain (PSSD) technique. We describe the
shock detection diagnostics necessary for this numerical study and verify them against theoretical shocking
predictions for the dispersionless case. These predictions show a carrier envelope phase and pulse bandwidth
sensitivity in the single-cycle regime. The flexible dispersion management offered by the PSSD enables us to
independently control the linear and nonlinear dispersion. Customized dispersion profiles allow us to analyze
the development of both carrier self-steepening and shocks. The results exhibit a marked asymmetry between
normal and anomalous dispersion, both in the limits of the shocking regime and in the (near) shocked pulse
wave forms. Combining these insights, we offer some suggestions on how carrier shocking (or at least extreme

self-steepening) might be realized experimentally.
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I. INTRODUCTION

The self-steepening of an optical pulse envelope was first
studied by DeMartini et al. in 1967 [1] and is a well-known
phenomenon associated with self-phase modulation (SPM).
Surprisingly, however, the possibility of self-steepening of
the optical carrier wave was considered even earlier in a
1965 paper by Rosen [2], who showed that, for a third-order
X nonlinearity (and under suitable conditions), a shock (or
field discontinuity) develops in a finite distance. This latter
phenomenon received little attention for more than 30 years,
until it was revisited in the 1990s by Moloney and co-
workers [3,4], who performed finite difference time-domain
(FDTD) simulations of the process. Three-dimensional (3D)
FDTD simulations of carrier shocking have recently been
performed by Trillo et al. [5].

In the present paper, we investigate carrier wave shocking
in ¥'* nonlinear materials where SPM is accompanied by the
generation of (odd) higher harmonics. For the dispersionless
case we have generalized earlier predictions based on the
method of characteristics (MOC) to allow for arbitrary initial
wave forms. This allows us, for example, to predict the car-
rier envelope phase (CEP) sensitivity of the shocking dis-
tance for optical pulses, as well as the dependence on pulse
length.

Our primary interest in this paper is the effect of linear
dispersion on carrier shock formation. Since no analytic so-
lutions exist in this case, we are forced to rely on numerical
simulations. In any discussion of carrier wave shocking, it is
important to distinguish between three related concepts: the
physical system, the mathematical model, and the numerical
model. The mathematical model is an approximation to the
physical system, while the numerical model is an approxima-
tion to the mathematical model. Actual discontinuities occur
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'Note that in this paper we use the term “carrier” to denote all the
oscillations of the field and do not use its other sense—i.e., that of
fixed-frequency oscillations as used in a envelope and carrier rep-
resentation a pulse.
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only in the mathematical model, and it is these to which the
idea of shock formation refers. In the physical system, dis-
continuities are prevented by phenomena not included in the
mathematics, while numerical codes inevitably fail as a
mathematical discontinuity is approached. The indicator of
an imminent “shock” is the rapidly increasing gradient
(steepening) of the optical carrier. In the numerical model,
we see numerical symptoms generated by extreme self-
steepening, and these correlate with the onset of discontinui-
ties in the mathematical model. Under these circumstances, it
has been necessary for us to develop a quantitative numerical
test of “shock formation.” We have found the most satisfac-
tory diagnostic to be “local discontinuity detection” (LDD),
which gives results that are in good agreement with theoret-
ical MOC predictions based on the mathematical model.
LDD provides a clear numerical measure of the rapid steep-
ening that precedes the appearance of a discontinuity in the
mathematical representation. We continue to use the term
“shock™ to describe the situation where a mathematical
shock is imminent.

In our simulations, we exploit the flexibility in dispersion
management offered by the pseudo spectral spatial-domain
(PSSD) technique [6] to study carrier shock formation for a
range of simple dispersion profiles and determine the degree
of phase mismatch that carrier shocking can tolerate. As ex-
pected, we find that shocking occurs when the nonlinearity
dominates the linear dispersion. However, it emerges that the
process is asymmetric, with anomalous dispersion being far
more conducive to shocking than normal dispersion. Hence,
the fact that the LDD scheme does not detect carrier shocks
in simulations involving (normally dispersive) fused silica,
even at powers equal to its damage threshold, is neither sur-
prising nor necessarily discouraging. After all, anomalously
dispersive materials could potentially be engineered. Further,
our results also relate to how one might perform carrier shap-
ing (as opposed to carrier steepening), a process that has
some interesting applications.

After briefly describing our simulation methods in Sec. I,
we consider dispersionless shocking and the method of char-
acteristics in Sec. III and our LDD shock detection scheme in
Sec. IV. Then we discuss the effect of dispersion on carrier
shocking in Sec. V, followed by our numerical results in Sec.
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VL. In Sec. VII we consider the potential relevance to experi-
mental detection of carrier steepening and/or shocks. Finally,
in Sec. VIII, we present our conclusions.

II. SIMULATION METHODS

The PSSD method [6,7] offers significant advantages over
the traditional FDTD and pseudospectral time-domain
(PSTD) [8] techniques for modeling the propagation and in-
teraction of few-cycle pulses. Run times are generally faster,
and the PSSD method also offers far greater flexibility in the
handling of dispersion. Whereas the FDTD and PSTD meth-
ods [8] propagate fields E(z) and H(z) forward in time, the
PSSD method propagates fields E(r) and H(z) forward in
space. It is important to keep this difference in mind when
comparing our results to those in [8]. Under the PSSD ap-
proach, the entire time history (and therefore frequency con-
tent) of the pulse is known at any point in space, so arbitrary
dispersion incurs no extra computational penalty. In contrast,
the FDTD or PSTD approaches use convolutions incorporat-
ing time-response models for dispersion.

We apply the PSSD algorithm to two representations of
the field and source-free Maxwell’s equations in nonmag-
netic media; the first uses the E and H fields and the second
the directional fields G*(¢)=a, (1) * E,(t) = 8,H,(t) [9], where
* stands for a convolution in time. Here the «, and B, include
the (linear) permittivity and permeability of the material [i.e.,
€(t),u]. These G* fields enable us to rewrite Maxwell’s
equations and efficiently separate out the relevant forward-
going part of the field.

For an instantaneous x'* nonlinearity, the equations for E
and H in the 1D (plane-wave) limit are

"—H% - e B eV, (1)
dEx(t;Z) _

d
dz - E[MoHy(t;Z)]- (2)

The G*-field simulations usually assume G™=0 and, as a
result, contain only forward-traveling components. The
forward-only wave equation for G* is

dG*(1;2)

de d%[ﬁ,a,(;) * GH(t32) + BXPVE1:2)], (3)

where it is most straightforward to calculate the nonlinear
term by reconstructing E(;z) from G*(¢;z) in the frequency
domain using E(w;z)=G*(w;z)/2a,(w), since G-=0. Notice
the similarity between Egs. (1) and (3), but that Eq. (3)
propagates the field in a single first-order equation, rather
than two.

Typical array sizes used in pulse simulations were N
=2'% covering a time window T=200 fs, and (spatial) propa-
gation steps were dz=0.4c¢T/N=0.9 nm. We ensured the sta-
bility of our integration using Orszag’s 2/3 rule [10], which
involves setting the upper part of the spectral range to zero. It
is worth noting that changing this cutoff, either by adjusting
its position or by using a smoothed (rather than steplike)
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FIG. 1. (Color online) The profile of a few-cycle optical pulse
just prior to shocking in the dispersionless limit. The larger oscilla-
tions in the center of the pulse undergo more self-steepening than
those in the wings. The standard pulse parameters were used.

filter, made little difference to test simulations. The pulse
profile used as an initial condition was

E(t) = Ey sin(w, ¢ + ¢)sech(0.28w,t/7), (4)

where our standard parameters were w;=2.356 X 10" rad/s
(i.e., A=800 nm) with 7=0.93. Such pulses are rather short
[since the number of cycles inside the intensity full width at
half maximum (FWHM) is 7], but in fact the shocking dis-
tance is only weakly dependent on the pulse width, with
significant variation only appearing for pulses of a few
cycles or less.

We also performed continuous wave (cw) simulations, for
which we modeled just a single cycle of the carrier assisted
by the periodic nature of the discrete Fourier transform. For
these we used array sizes of N=2'°, and the time window
was set by the period of the field oscillations.

Our default value of nonlinear strength was x¥E§=0.02,
which is comparable to that in fused silica at an intensity of
0.7 X 10" W/cm?; our x*® parameter is equivalent to 7 in
Rosen [2] and a in Gilles et al. [4]. We use an instantaneous
nonlinearity, since our primary interest is linear dispersion,
and that is a far more significant effect than the nonlinear
time response.

III. CARRIER WAVE SHOCKING

As an introduction to the process of carrier wave shock-
ing, Fig. 1 shows the profile of a pulse propagating in a
dispersionless x® medium, just before a shock occurs. The
nonlinearity gives rise to a nonlinear index of refraction,
n,E?, the effect of which is to increase the effective refrac-
tive index in the more intense regions of the profile. This
reduces the phase velocity at the peak of each oscillation
with respect to the rest of the wave form and causes the slope
on the trailing edges to increase dramatically.

The effects seen in Fig. 1 are associated with the genera-
tion of third and higher harmonics, although the harmonic
components are not particularly strong even when a shock is
about to occur. As an example, Fig. 2 shows how the har-
monics build up as shocking is approached. The w* scaling
of the intensity spectrum in the figure exaggerates the con-
tribution of the higher orders and has been chosen for illus-
trative purposes. Notice that the profile becomes nearly flat
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FIG. 2. Development of the heights of the scaled harmonic
peaks as a pulse approaches the (LDD) shocking distance of
4.3 pm in the dispersionless case. Each line perpendicular to the
w/w; axis corresponds to the (scaled) contribution from that spec-
tral peak. Note that the viewpoint has been rotated so that the con-
tribution from the fundamental is to the right. The initial pulse
contained about 33 cycles (7=33).

(i.e., the spectrum falls off as the fourth power of the fre-
quency) just before shocking is registered at around 4.3 pm.
If we write

E=A(t)[sin(wt) + ycosBwt + )], (5)

we find that an appropriate choice of A(r), with y=0.1 and
=0, gives us a passable match to Fig. 1. Note that this
choice of ¢ corresponds to the phase of third-harmonic gen-
eration (THG) under index matched conditions—i.e., where
no=n(w;)=n(w;).

Rosen’s original paper [2] used the MOC to predict the
formation of a value discontinuity in the field at certain
points within the profile. If the displacement of the disper-
sionless medium is written

D= eE+xVE+xVE), (6)
he showed that the wave equation for E is
PE P E PE
27 & _ =4, ,8—_
c =1+ + 7
PEiCLY QOIS S (7)

and that the associated equation governing the characteristic
lines of E is

JE JE
— +v(E)—=0. 8
o TUE) (8)

Here, the velocity v(E) is given by

c

v(E) = (e, + 3X(3)E2)1/2’

)
where €,=1+x"=n, is the (relative) dielectric constant and
ng the linear refractive index.

Using Eq. (9) along with the construction shown in Fig. 3,
we can derive a simple formula for the distance to shocking.
The figure shows two characteristics AC and BC, originating
from points A and B and converging towards a shock at C
after a distance of L. The intensity at A is higher than at B, so
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FIG. 3. Method of characteristics. Two points A and B on the
field profile, separated initially by a time difference dt, travel at
different speeds v—dv and v, and meet at point C.

the speed associated with AC (represented by its gradient) is
lower than that of BC. This means that at C, the field has two
values and a discontinuity has formed. From the geometry of
the figure, it is easy to show that

2
L_v v (10)

where f, v=c/ny, and L=vt are, respectively, time, speed,
and distance.
On the other hand, differentiating Eq. (9) leads to

dv 3cx? d(E?)
dr— 2[ng+3xVET? di

: (1

and this combined with Eq. (10) yields
_cng\ 1+ 3X(3)E2/ng
3= dEH1dr)

(12)

¢ V1 +8n,E%ng

= , 13
4n, (-dE*/dr) (13)

where n,=3x%/8n, is the material parameter determining
the intensity-induced refractive index shift as n,E% For a
given profile, a shock will occur first at the point where
—dE?/dt reaches its negative extremum. We can therefore
define the shocking distance as

c . V1+8n,En,

L =— 14
shock 4]’12 min (_ dEz/dt) ( )

¢ .
=——mi

1
——————  for 8n,E¥ny < 1. 15
dn, T (CaEYan O o (13)

This formula is more general than that of either Rosen [2] or
Gilles er al. [4]. Notice in particular that the parameter that
controls the shock behavior is not the gradient of the field
(dE/dt), but that of the field squared (dE*/dt).

For a sinusoidal initial wave form E=E; sin(w,t+ ¢), it is
easy to show that shocks form at
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FIG. 4. MOC shocking distances as a function of phase, for
pulses as in Eq. (4), allowing for different pulse lengths. We include
the 1/2 cycle 7=0.56 results to emphasize the trend, but even for a
long pulse (7=28), a small peak can be seen just below ¢/
=0.01. The peak position is weakly 7 dependent. The + signs de-
note LDD shocking distances obtained from simulations of the 7
=0.93 case.

wit=—ml4+jmT— P, (16)

where j is an integer, and that the shocking distance is

2eng c
30)1X(3)E% - 4w1n2E(2) '

Lshock = ( 1 7)

The approach is readily extended to pulsed wave forms of
the type defined in Eq. (4). Analytical results can be derived
in the new situation in which Eq. (16) becomes a transcen-
dental equation. However, the results are cumbersome and it
is simpler to scan the profile numerically to determine the
shocking parameters. It turns out that the shocking distance
for short pulses exhibits an interesting sensitivity to the car-
rier envelope phase ¢. While in the cw case all locations
defined by Eq. (16) were equivalent, for pulses, the one near-
est the peak of the envelope has a shorter L, than the
others.

A set of results is displayed in Fig. 4 where the shocking
distance is plotted as a function of the carrier phase ¢ for
sech profiles with different pulse widths 7. The dotted line is
for the case of a very broad pulse for which L, is given by
Eq. (17). The sharp peaks mark a curve crossing where the
shock location switches from one point on the sinusoid to
another. Notice that the range of shocking distances increases
for shorter pulses and that, unsurprisingly, the lowest values
occur when ¢ is around—7r/2 i.e., when the pulse has a co-
sine form.

One very important point to note from Fig. 4 is that for
pulses containing more than a few cycles, the dependence of
the shocking distance on pulse width is very weak. We will
see this message repeated later in Sec. V, with shock regions
being similar for both single-cycle (7=1) pulses and cw (7
=o0) fields.

IV. SHOCK DETECTION

Since optical shock formation is directly associated with
regions of increasingly steep field gradient, any numerical
scheme, however sophisticated, is bound to fail at some point
in the process. We therefore want to recognize when a shock
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FIG. 5. The profile of a few-cycle optical pulse at the point of
shocking. The larger oscillations in the center of the pulse undergo
more self-steepening than those in the wings. (a) The whole pulse,
with the LDD carrier shock circled (O). (b) An expanded view of
the shock region, with its point of inflection (at ~9.3 fs) being very
close to the steepest gradient (at ~9.1 fs). The standard pulse pa-
rameters were used.

is imminent, not only to avoid numerical problems, but as a
means to estimate the distance at which a discontinuity
would occur in the mathematical model.

One obvious symptom of impending numerical failure is
loss of energy conservation [6]. However, this does not give
an indication at the first instance of a shock forming, but
rather signals the accumulated effect of multiple small nu-
merical failures from many shocked regions.

A more physical strategy is to search for regions where
the field gradient dE/dt is large and increasing rapidly and to
use this to predict the shocking point. A useful variant, sug-
gested by the MOC calculation in the previous section, is to
use the value of —dE?/dt instead of the gradient.

Overall, we find that the best method is local discontinuity
detection, which is similar to techniques used in other fields
(see, e.g., [11]). As the shock regime is approached, narrow
shoulders with associated points of inflection appear within
the regions of rapidly increasing gradient. The procedure is
therefore to scan the field profile for the maximum gradient
(of either E or E?) and, if it occurs near a point of inflection,
an incipient shock is registered. An example of a pulse that
has just triggered the LDD diagnostic is shown in Fig. 5.

The LDD method requires two parameters. The first de-
termines the time scale used in determining whether a point
of inflection exists. For this, we pick the scale set by our
temporal grid and insist that the field gradients calculated at
three adjacent grid points have opposing signs: either up-
down-up or down-up-down. The second determines the
maximum range allowed between the maximum gradient and
the point of inflection, and our default value for this was ten
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FIG. 6. The LDD shocking distance as a function of refractive
index, comparing the approximate MOC prediction from Eq. (15) to
PSSD simulations (+) for pulses with 7=0.93. Other PSSD simu-
lation results from independent codes give very similar results to
those shown in the graph.

grid points. In our simulations, we see that the position of the
first detected shock depends only weakly on this range. We
can easily minimize the small sensitivity to these parameters
by holding them fixed throughout any given set of simula-
tions. As a result, we have found LDD to be a sensitive and
reliable method of shock detection.

Equation (17) predicts that the shocking distance should
increase linearly with the refractive index n,. We use this to
test the LDD diagnostic in Fig. 6, where the analytical for-
mula is compared with the results of numerical simulations.
This figure shows close agreement between prediction [using
Eq. (15)] and simulation, where the approximation causes
the MOC prediction to be reduced by less than 0.1 um at
ng=1. We see similar agreement between simulations using
the LDD method and the carrier phase sensitivity shown in
Fig. 4. The presence of small systematic differences (as in,
e.g., Figs. 4 and 6) can be easily understood, since the LDD
diagnostic is (strictly speaking) a test of the numerics and is
not a direct test for the presence of a physical shock or math-
ematical discontinuity.

V. EFFECT OF DISPERSION ON SHOCKING

The primary purpose of this paper is to understand the
principles of carrier shock formation in the presence of dis-
persion. Some simple ideas about the role of dispersion can
be understood from Eq. (5) using the insight from Egs.
(10)—(15)—i.e., that the rate of change of E? is the critical
factor in shock development, rather than that of E. If only the
fundamental and third-harmonic components are considered
[as in Eq. (5)], the effective refractive indices are

AnNL:1=n1+n2(1+3y2)11, (18)

Anyps=ny+ny(3+ Y. (19)

Evidently, the relative phase velocity of the two waves is
affected by both linear and nonlinear dispersion, so the phase
¢ in Eq. (5) will vary accordingly as the pulse propagates.
Figure 7, which shows how dE?/dt varies with i, suggests
that shocking is likely to be exacerbated when  is small and
positive, but moderated when ¢ is negative. Broadly speak-
ing, the former case will be promoted by anomalous disper-
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FIG. 7. The effect of different time lags between fundamental
and third harmonics on the steepness of the pulse. The field profile
is as in Eq. (5), with A(r)=A, and y=1/16. (a) Scaled maximum
values of M j=max(dEf/dt) as a function of third-harmonic phase
offset . We can see that the maxima of dE/dt and dE*/dt occur at
different #. (b) Position on the pulse 6;=w¢; of the maxima plotted
in the top frame. Note that the kinks in (a) and (b) occur for offsets
that give the longest shocking distances, not the shortest.

sion and the latter by normal dispersion; however, the pro-
cess is clearly complicated, since it involves time-dependent
phase shifts between the waves and the interplay of linear
and nonlinear dispersion. Of course, since carrier shocking
relies on the establishment and maintenance of specific phase
relationships between a set of harmonics, it must be expected
that strong dispersion of either sign will disrupt the shock
formation process. On the other hand, the simple argument
that has been offered suggests that shocking may be tolerant
to a degree of anomalous dispersion, but not to a similar
amount of normal dispersion. In general, therefore, a graph
of shocking signature versus refractive index mismatch
might be expected to exhibit a shock region where nonlin-
earity dominates the dispersion (displaced in the direction of
anomalous dispersion), surrounded by a shock-free region
where dispersion dominates the nonlinearity. Moreover, if a
dominant coherence length L.~ can be defined, it is reason-
able to expect shocking to occur when this exceeds the char-
acteristic SPM length (Lgpy,). As we shall see, all these fea-
tures are borne out by the numerical results.

In our numerical simulations, we make extensive use of
model dispersion curves, which enable refractive index dif-
ferences between harmonics to be freely controlled and lead
to uncomplicated boundaries between the shock and no-
shock regimes. The dispersion profiles shown in Fig. 8 duly
contain either refractive index steps An at the midpoints be-
tween successive odd harmonics or smooth gradients o that
provide a similar net change. In the simplest option, there is
a single step at 2w;, in which case the dominant coherence
length is clearly Lo=m/|ks—3k)|=mc/3w|n3—n|; we have
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FIG. 8. Types of refractive index profile used. The solid lines
show a single refractive index step midway between w; and ws, so
that the fundamental is always phase mismatched from its higher
harmonics, although they remain perfectly phase matched with each
other. The dashed lines show multiple refractive index steps, each
of the same size and always midway between subsequent harmon-
ics. The dotted lines show a linear refractive index gradient which
gives the same mismatch between subsequent harmonics as the
multistepped case. We do not show lines for the case of a single step
at 4w, to avoid cluttering the figure.

also tried a single step at 4w;, which has a shorter L. In all
cases, when n increases with frequency, the situation corre-
sponds broadly to normal dispersion, while decreasing n cor-
responds to anomalous dispersion. The step size (or gradient)
is chosen to be comparable to values in fused silica at w;
=1.5 rad/fs, where the refractive index differences between
the lower harmonics are An;3~0.06 and An;5=0.12 [4].
While we consider the case of fused silica itself in Sec. VII,
the results based on the model dispersion characteristics are
invaluable for understanding the essential principles of car-
rier shock formation in dispersive media.

VI. RESULTS AND DISCUSSION

We will now analyze our numerical simulations of carrier
shocking in the presence of dispersion on the basis of the
principles discussed above. Results are included for both a
cw and for a single-cycle pulse. The cw case gives slightly
wider shocking regions, but the differences are minor. This is
because the effect of the pulse envelope on the field ampli-
tudes and gradients of the central carrier oscillation is small,
except when considering subcycle pulses. In the results we
present, the energy conservation and LDD measures reveal
the presence of sharp boundaries between the shocking and
nonshocking regions.

Results for single refractive index steps at 2w; and 4w,
are presented in Figs. 9 and 10, respectively, whereas Fig. 11
has a step midway between all harmonics. In both single-
stepped cases, a useful coherence length can be defined on
the basis of the mismatch between the fundamental and the
harmonic just above the step. In the multistepped case, there
is no easy way to define a dominant coherence length.

Figure 9(a) shows the pulse profiles in the anomalous
(negative) and normal (positive) single-step cases for the
smallest step size at which shocking did not occur. The first
obvious difference between the profiles is the opposite walk-
off direction of the third harmonic, although the third-
harmonic contribution is hard to see in the anomalous case.
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FIG. 9. (Color online) Carrier shocking for cw and pulsed (7
=0.93) cases with a single refractive index step at 2w;. Frame (a)
compares chirped pulses at a 40-um propagation distance from the
nonshock region immediately outside of the shocked region; the
upper curve (X) is for the negative step, the lower (Y) for the
positive step. Frame (b) shows the correlation in the region where
L= Lgpy, between energy conservation failure (logarithmic right-
hand scale, dots) and the LDD-detected shocking distance (left-
hand scale, solid line). The dotted line shows the LDD results for a
cw field (7=0).

The second is that the pulse profiles exhibit distinctly differ-
ent characteristics according to the sign of the dispersion.
Narrow spikes are visible in the anomalous case, whereas
profiles with more rounded maxima occur for normal disper-
sion. A possible interpretation is suggested by Fig. 7, where

40

= 10°
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220 103
8 <
2 _12
O 40 10

.1 -005 O 0.05 0.1

Ana’s

FIG. 10. (Color online) Carrier shocking for cw and pulsed (7
=0.93) cases with a single refractive index step at 4w,, showing the
correlation in the region where L= Lgp), between energy conser-
vation failure (logarithmic right-hand scale, dots) and the LDD-
detected shocking distance (left-hand scale, solid line). The dotted
line shows the LDD results for a cw field (7=).
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FIG. 11. (Color online) Carrier shocking for cw and pulsed (7
=0.93) cases with multiple refractive index steps, showing the cor-
relation in the region where L= Lgp;, between energy conservation
failure (logarithmic right-hand scale, dots) and the LDD-detected
shocking distance (left-hand scale, solid line). Note the narrower
range of An as compared to the previous two graphs. The dotted
line shows the LDD results for a cw field (7=°).

we saw that anomalous dispersion tends to create regions of
higher gradient.

The shocking region in Fig. 10 has a similar outline to
that of Fig. 9(b) except that it is slightly narrower, as ex-
pected from the coherence length discussion above. How-
ever, the shocking region in Fig. 11 is much narrower, espe-
cially given the change in the An scale. This is because the
multistepped nature of the refractive index leads to a corre-
spondingly large range of coherence lengths, with shorter
ones corresponding to those spanning several steps. Since the
shocking region in the multistep case has reduced in size by
a factor of 2 or 3, a reasonable inference might be that the
dominant coherence length results from interaction over two
or three refractive index steps.

In realistic media, the refractive index will vary smoothly
with frequency and the group velocity can different from the
phase velocity. We can approximate this situation most sim-
ply using a refractive index gradient rather than a series of
steps. The results using the LDD method in this case can be
seen in Fig. 12, where now we also vary the strength of the
nonlinearity. As in the previous cases, we see a well-defined
shocking regime that is asymmetric about the nondispersive
case.

Detailed examination shows that the curves in Fig. 12
exhibit a marked similarity and can be brought into near
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FIG. 12. Shocking distance vs mismatch for weak refractive
index gradients & and a range of nonlinearities. This shows an
abrupt cutoff at positive An, but a relatively gradual one at negative
An. The initial pulses are identical to those in Fig. 9. No cw results
are shown, since the dispersion experienced by the field would be
identical to the multistepped case shown in Fig. 11.
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perfect coincidence by applying the scaling x* — x®/m,
L—mL, and An— An/m. We also get a comparable similar-
ity for each of Figs. 9-11, when simulations at nonlinear
strengths of )((3)E(2)=0.01 and 0.04 are added to the results.
This demonstrates that the character of the shocking is domi-
nated by the sign of interharmonic phase velocity differ-
ences, not by the local group velocity dispersion at each
harmonic. Thus anomalous (normal) dispersion is primarily
interesting because it gives a negative (positive) refractive
index shift between successive harmonics. We leave the
complicated (and far more subtle) effects of group velocity
differences or dispersion for later work.

An important feature of all the results is the pronounced
asymmetry, with shocking persisting much further into the
anomalous dispersion regime; we have even seen it for the
case of a weakly parabolic refractive index.

We can quantify this asymmetry by considering linear and
nonlinear contributions to the phase matching of the harmon-
ics (i.e., linear and nonlinear refractive index shifts), as de-
scribed at the beginning of Sec. V. In the simple single step
case shown in Fig. 9(b), the first to third harmonic phase
shift will dominate, because it applies to the two most in-
tense spectral components. We can calculate the SPM-
induced refractive index shift between the fundamental and
third harmonic with Egs. (18) and (19) to be Any;.,
—Any;.3=—0.011, since ¥PE?=0.02 at the peak of the car-
rier oscillations, the refractive index is n%=2, and 2n2E%=2
X 3x¥'¥E?/8n,. This is roughly comparable to the offset of
the shocking region, which is centred at about An;
=-0.014. We cannot expect perfect agreement, since the cal-
culations ignore the role of higher-harmonic generation and
depletion of the fundamental. While a simple calculation is
reasonably successful in this single-step case, it cannot be
applied for a realistic medium—or indeed to the situation
shown in Fig. 12. There, the effects of dispersion, higher-
harmonic generation, and nonlinear refractive index shifts
are inextricably intertwined.

To summarize, we have demonstrated that shocking is
strongly dependent on the interplay between L. and Lgpy,,
with shorter L:’s (increasing An’s) decreasing the likelihood
of shocking. We have also deduced the reasons for the strong
asymmetry of the shocking region.

VII. APPLICATIONS AND EXPERIMENTS

In Secs. I and IV, we discussed how imminent carrier
shocking might be recognized computationally. In consider-
ing whether shocking might be detectable experimentally, we
must now decide how it might manifest itself in the labora-
tory. A mathematical discontinuity is clearly not a physical
possibility, even if Rosen [2] did manage to accommodate it
theoretically, albiet at the expense of energy conservation. In
practice, the increasing field gradients (and spectral broaden-
ing) that precede a shock will inevitably engender new
physical processes that will limit the steepening. Indeed, we
have already seen this happening in the previous two sec-
tions, where dispersion has been seen to frustrate the self-
steepening process; the next barrier would be the time scale
of the nonlinear response.
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FIG. 13. Numerically predicted shocking distances L, in
fused silica. These are the MOC predicted distances for the wave
form, assuming the dispersion was (abruptly) neglected; the shortest
distance shown is about 1.9 um. The damage threshold for fused
silica was taken to be Py esnoa=50 TW/cm?,

Although there is no question of a mathematical disconti-
nuity being observed in an experiment, the recent advances
in the measurment of optical pulse profiles (see, e.g., [12])
suggest that it might be possible to observe carrier steepen-
ing. Indeed, it has already been predicted [4] that noticeable
steepening effects could occur for pulses propagating in
fused silica. Unfortunately, in our own simulations of this
process, the LDD shock detection was not triggered at any
realistic pulse intensity. Although visible steeping did occur,
at no point was a seriously distorted wave form approached
and the effects would have been milder if we had included
the finite response time of the nonlinearity. The results pre-
sented in Fig. 13 show the steepest gradient recorded as a
function of distance and pulse intensity for these simulations.
The third harmonic coherence length for these parameters is
about 7 um, and we can attribute the regular variation with
distance seen in the figure to the third-harmonic component
aligning with successive oscillations of the fundamental as
the waves move across each other. The key reason why in-
cipient shocking was not detected is because the pulse fre-
quency lies in a region of weak normal dispersion, whereas
we have shown in Sec. V that a region of weak anomalous
dispersion (assuming it could be achieved) would be favor-
able.

The current interest in media with tailored dispersion
characteristics [13-15] raises the interesting question of
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whether it might be possible to engineer a material that
maximizes self-steepening. A major stumbling block would
be the need for control over many harmonic orders; however,
for a narrow-band pulse, only the dispersion characteristics
close to the harmonics would be relevant, which might per-
haps make the technical challenge less formidable.

The recognition that dispersion control can enhance (or
reduce) carrier self-steepening suggests other applications if
we widen our horizons to encompass the more general idea
of carrier shaping. In this case, we would exploit both non-
linearity and dispersion control to optimize the shape of the
carrier oscillations for a particular experiment. Applications
such as high-harmonic generation (e.g., [16]) might well
benefit from suitably designed carrier wave modulation.

VIII. CONCLUSIONS

In this paper we have investigated carrier shock forma-
tion, developed criteria for detecting its onset in numerical
simulations, and shown how it is influenced by a range of
parameters, particularly dispersion. We have also obtained
remarkable agreement between numerical simulations and
theoretical predictions of the shocking distance in the disper-
sionless limit and shown that the process is sensitive to both
CEP and pulse duration.

Although we have confirmed that shocking occurs in a
narrow parameter range, this is far from being the whole
picture. In particular, there is a distinct asymmetry between
the anomalous and normal dispersion regimes. The former
leads to shocking signatures such as the appearance of nar-
row spikes as the higher harmonics interfere on the steepen-
ing part of the pulse profile. In contrast, normal dispersion
creates no such features and the pulse profiles have a rather
blunt appearance. The asymmetry arises from the effect of
the nonlinear refractive index on the dispersion induced
phase mismatch.

The conclusion to be drawn from our results is clear: if
they could be engineered, materials with wide regions of
weakly anomalous dispersion are much better candidates for
generating steep, shocklike field profiles than those (such as
silica) with a weak normal dispersion. Detecting incipient
shock formation in materials like fused silica is likely to be a
near impossible task, given the constraints imposed by their
damage thresholds.
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